
^DEPARTMENT OF D E F E N c¥] ilOXfl
DEFENCE SCIENCE & TECHNOLOGY ORGANISATION I Vvl V

i

A Federated Geospatial and
Imagery Exploitation Service
(GIXS) Model

Derek Weber and Heath James

DSTOTR-1013

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

20010628 015

A Federated Geospatial and Imagery Exploitation
Service (GIXS) Model

Derek Weber

Surveillance Systems Division
Electronics and Surveillance Research Laboratory

Heath James

Distributed High Performance Computing Group
University of Adelaide

DSTO-TR-1013

ABSTRACT

In order for the Geospatial and Imagery Exploitation Service (GIXS) architecture to
take advantage of distributed processing of image exploitation tasks, it needs to be
adapted to suit a federated environment. This document reports on work in progress
by the Image Analysis and Exploitation Group in conjunction with the Distributed and
High Performance Computing Group of The University of Adelaide to develop a
federated GIXS architecture along with a proof-of-concept implementation.
A federated GIXS model is described, along with a use case scenario including an
event-flow diagram. Also described are the changes necessary to adapt the current
GIXS standard to our federated model. The report concludes with some future
directions for our research.

RELEASE LIMITATION

Approved for public release

fDEPARTMENT OF DEFENCJ

DEFENCE SCIENCE 1 TECIROLICT OICANISATIOK DSTO
f\Q fOl~ 0*1-fate

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury South Australia 5108 Australia

Telephone: (08) 8259 5555
Fax: (08) 8259 6567
© Commonwealth of Australia 2000
AR-011-533
August 2000

APPROVED FOR PUBLIC RELEASE

A Federated Geospatial and Imagery
Exploitation Service (GIXS) Model

Executive Summary

This paper details work in progress on developing and demonstrating a federated
image exploitation services model based on the Geospatial and Imagery Exploitation
Service (GIXS)1 architecture. This work is being carried out as part of a collaborative
research effort between the Image Analysis and Exploitation Group of the Australian
Defence Science and Technology Organisation and the Distributed and High
Performance Computing (D&HPC) Group of the University of Adelaide. A conceptual
model has been developed and work has commenced on a prototype implementation.
Although there are issues still to be worked through, the main concepts are in place.
This document describes those concepts, provides an example of the event flow of a
given scenario, lists the differences and changes to the current GIXS, and finally
itemises some areas for further investigation.

The GIXS architecture is a software model for developing digital image exploitation
systems. The GIXS specification is limited, however, in that it implicitly requires that
systems using its architecture not only must run on a single host, but cannot divide
processing amongst multiple hosts.

An alternative to a single-host architecture is a federated architecture in which multiple
hosts are able to share their processing. Federated and distributed software systems
have obvious advantages over single-host systems, such as failure recovery
capabilities, load balancing, and the potential to parallelise the processing of multi-
stage tasks. Although these advantages come at a price (system complexity),
distributed systems can make better and more efficient use of resources that already
exist, rather than requiring the purchase of more powerful and expensive computers.

The proposed federated GIXS model retains the main subsystems of the current GIXS,
however changes have been made to the visibility, some behaviour and responsibilities
of the subsystems, along with a few minor interface changes. The proposed model
remains interoperable with the United States Imagery and Geospatial Information
Service (USIGS)2, of which the GIXS is itself a part.

Future work includes the development of a working implementation of our federated
model, further development of interfaces and communication protocols, the
investigation of the persistence of image processing chains, and examination of the
issues involved with the dynamic manipulation of distributed image processing chains
during execution.

1 Geospatial and Imagery Exploitation Service (GIXS) Specification, Version 1.0, National Imagery
and Mapping Agency (NIMA), United States Imagery and Geospatial Information System
(USIGS), document number S1010420-A, 22 June 1999
2 USIGS Architecture Products Home Page, National Imagery and Mapping Agency (NIMA), 9
February 2000. Available via the WWW as http://www.nima.mil/sandi/arch/.

Authors

Derek Weber
Surveillance Systems Division

Derek Weber completed a Bachelor of Science and Honours in
Computer Science at Flinders University in 1998. Since then he
has worked as a Professional Officer in the Systems Surveillance
Division investigating the various Java-based image processing
packages and their applicability to defence applications. Derek's
research interests include distributed and object oriented software
systems, software architectures and patterns, agent technology,
and mobile code technologies.

Heath James
University of Adelaide

Heath James is a Research Fellow in the Distributed and High
Performance Computing Group in the Computer Science
Department at the University of Adelaide. Heath completed his
PhD in July 1999 and is a member of the IEEE, IEEE Computer
Society and ACM. Heath's research interests are in scheduling,
wide-area distributed computing and metacomputing middleware
for scientific applications.

Contents

1. INTRODUCTION 1
1.1 Federation and the USIGS Architecture 2
1.2 Overview of Document 3

2. A FEDERATED GIXS MODEL 3
2.1 Overview 3
2.2 The Exploitation Query Manager 4

2.2.1 Exploitation Workflow Managers 5
2.3 DAG Structure 6
2.4 The Exploitation Buffer 7
2.5 The Image Exploitation Service 8
2.6 The Exploitation Framework 9
2.7 Federated GLXS and IMAD 9

3. BASIC PATH SCENARIO 10

4. CHANGES REQUIRED TO THE CURRENT GIXS 13

5. CONCLUSION 14

6. ADDENDUM 15

APPENDIX ^ABBREVIATIONS AND ACRONYMS 16

APPENDIX B:XD MODULE IDL 17

List of Figures

Figure 1. The federated GIXS model showing the major subsystems of the architecture
and how they are visible to each other 4

Figure 2. The XQM module, containing interfaces, data structures, and exceptions for
Client communication with an Exploitation Query Manager 5

Figure 3. A UCO::DAG structure containing not only the instructions for the image
processing chain, but also header information including job details and global
hints 6

Figure 4. An interface for non-image data results of image exploitation operations in
IDL 7

Figure 5. A network-level diagram showing how the federated GIXS system would
interact with the IMAD system, and other services 10

Figure 6. An example DAG of image exploitation operations, and how it is divided into
sub-DAGs to be executed on Host A and Host B 11

Figure 7. A numbered flow of events initiated by a Client submitting a DAG of
exploitation tasks to its local XQMgr 11

DSTO-TR-1013

1. Introduction

This document presents a federated model of image exploitation services adapted from
the Geospatial and Imagery Exploitation Service (GIXS) architecture[l].The GIXS
architecture was developed by the National Imagery and Mapping Agency (NIMA) of
the United States of America as a component of the United States Imagery and
Geospatial Information Service (USIGS)[2]. The GIXS specification details a general
architecture for building imagery and geospatial information exploitation systems,
including standardised interfaces, data conditions and error types. The current version
(1.0) of the specification implies that all of the system's image processing is to occur on
a single computer; if this system is to be made available to multiple users concurrently
the computer must be a powerful and expensive high-end machine.

In contrast to a single host system, a distributed system makes use of many computers
networked together typically controlled by a single 'head' machine. A task submitted
to the 'head' machine of the network may be farmed out to and processed by other
machines on the network, but the 'head' machine is responsible for the production of
the result. A federated system builds on this concept because each machine on the
network can act as a 'head' for any job submitted to the system. Tasks can be submitted
to any host on the network, and can be divided and farmed out from there, rather than
having a single point-of-failure of the distributed system (i.e. if the 'head' host goes
down, the system is unusable). In a sense a federated system may be thought to be a
symmetrically distributed system. A federated system offers many advantages over a
single-host system including a potentially better cost/performance ratio and better
failure recovery facilities. We introduce the concept of federation to the GIXS, adapting
it to a federated system. Please note that this is a work in progress and details are
subject to change as research results become available.

The model described in this document makes use of distributed processing techniques
through the federation of distributed image exploitation services. A general image
exploitation task may consist of a number of operations chained together requiring
information from a number of sources and perhaps generating a number of results.
This chain can be represented as a directed acyclic graph (DAG) of operation nodes. By
using distributed processing techniques, different parts of the DAG can be executed on
different computers on a network - specific operations could be carried out on
dedicated hosts that are particularly well-equipped for them (e.g. a statistics algorithm
may only be available on one machine on the network, or a single high-end computer
running UNIX may be very good at signal processing operations) if those machines are
available at the time of starting execution.

Federated environments offering distributed processing of DAGs of image exploitation
operations provide a number of advantages over a single-computer system. These
include:
1. failure recovery - if one computer on the network fails, then not all work on a

particular DAG has been lost;

DSTO-TR-1013

2. load distribution - the processing load of a DAG can be divided equally amongst the
computers available on a network, and, depending on the structure of the DAG, it
may be possible to parallelise some of the DAG's processing;

3. network traffic minimisation - platform independent code (e.g. Java bytecode) can be
transferred to a remote host to process large volumes of data (e.g. imagery) to
reduce network traffic (instead of the data being moved to a stationary program);

4. specialisation - specific computers can be dedicated to particular operations to take
advantage of the machine's individual capabilities;

5. new equipment cost minimisation - minimise further equipment purchases by making
better and more efficient use of current capabilities; and

6. symmetry - a federated architecture offers a peer-to-peer symmetry, so that any host
may act as the controller for a particular DAG's processing - this avoids the
problem of a single point of failure for all DAGs.

We believe that these advantages outweigh those of a single-host system, which may
have lower maintenance costs and better individual performance in some
circumstances.

1.1 Federation and the USIGS Architecture

The concept of federated systems is already present in the USIGS architecture in the
Image Management and Dissemination (IMAD) system[3]. Federation is achieved by
making a multitude of image product libraries (IPLs) appear as though they were one
library through the use of the IMAD Query Manager. When a query for an image or
images is made, it sends the query to the IPLs it knows about and manages the transfer
of the results to the requesting machine. If an image is replicated on several IPLs, the
Query Manager determines which is the best candidate based on the requesting client's
requirements and bandwidth availability. It is straightforward to calculate how
complete a request is by checking how much data has arrived at the client's machine;
estimates for job times are also readily calculated using bandwidth availability and
image size and bit-depth values.

Federating image exploitation through distributing exploitation DAGs over a network
of servers presents a variety of problems. Image dissemination involves the transfer of
one or more image products to the client's machine. Image exploitation involves the
processing of perhaps many images where the various image sources, the various
processing services called upon, and the client are potentially dispersed across a wide
area network. Updates on progress are significantly more complicated to obtain. It is
not clear first of all where the processing is being carried out, secondly whether parts
of it are in parallel. Thirdly, since the complexity of image processing algorithms varies
all that one can tell about an operation is that the processing is being done. Offering
accurate estimates of running time may be especially difficult to do in the situation
where the images are of variable size or the computers are not dedicated to image
processing tasks.

DSTO-TR-1013

1.2 Overview of Document

The next section describes the federated model that has been developed so far. Section
3 leads the reader through a distributed processing example as a flow of events. As the
example has a straightforward execution path, it is known as the Basic Path scenario.
The adaptations and modifications required to alter the current GIXS architecture to
our federated model are listed in Section 4. Finally, Section 5 summarises the work to
date and indicates where our future research efforts will be directed.

2. A Federated GIXS Model

In developing a federated GIXS model, we have endeavoured to retain as much of the
current GIXS architecture as possible. All of the major subsystems of the GIXS are
present, however some of the paths of visibility (i.e. which subsystems can see which
others and through which interfaces) and subsystem interfaces have been modified.
The changes that have been made to date assign the subsystems more precisely defined
responsibilities and behaviour. The major areas of change are in the Exploitation
Workflow Manager subsystem, the operation of the Exploitation Framework (FW)
service, the visibility of the Image Exploitation Services (IESs), and the assumption of
the availability of a service broker. The module naming has been altered in accordance
with proposed USIGS developments. This section describes the federated GIXS model
we have developed. The first subsection is an overview and the following subsections
deal with each subsystem individually.

2.1 Overview

Our suggested model is shown in Figure 1. The solid arrows indicate the visibility of
subsystems to each other. If a subsystem points to another, it can 'see' its interface. The
dashed arrows indicate communication paths over the network via remote method
invocations (carried out over middleware such as CORBA[4] or Java's RMI[5]); the
direction of the arrows indicate the direction of the method invocations. The Interface
Description Language (IDL) boxes indicate which module of IDL is used as the
interface to the subsystem. They are defined as described in the GIXS specification, but
modifications have been made to some of the modules and interfaces and the
Exploitation Query Manager Service (XQM) module is entirely new. The Exploitation
Workflow Manager has been replaced by the XQM which comprises the Exploitation
Query Manager (XQMgr) itself (the interface to the outside world) and multiple
Exploitation Workflow Managers (WFMgrs), one for each exploitation task DAG. The
XQMgr represents the Client's (or application's) view of the Exploitation Query
Manager Service, and thus of the GIXS system as a whole. The Client may be an
application in its own right, or it may be an Exploitation Workflow Manager from a
different host (submitting part of a DAG that it cannot process).

DSTO-TR-1013

THE NETWORK

1 XQM IDL 1

1

i

1
1

1

\
1

■

<

I

Client
t

/ |C0TS/G0TS

Host A

Figure 1. The federated GIXS model showing the major subsystems of the architecture and how
they are visible to each other

The notion of federation is achieved by the fact that all XQMgrs operate on a client-
server basis. If a WFMgr on one host is unable to carry out all processing in an
exploitation task DAG, it sends the appropriate sub-DAG to another XQMgr.
Knowledge of what services are available on which hosts is obtained through the use
of a service broker. DAGs are distributed on the basis of the knowledge in the service
broker. Result data is accessed across the network via federated GIAS-based
mechanisms such as the IMAD system.

2.2 The Exploitation Query Manager

Each host on the network has a XQMgr running on it that controls the execution of
exploitation tasks on that host. Specifically, the XQMgr organises the execution of
DAGs submitted to it by Clients, whether the Clients are WFMgrs from other hosts or
applications running on the local host. The XQMgr instantiates a WFMgr on a separate
thread to manage each DAG, so that the XQMgr can continue receiving and servicing
requests as the tasks are carried out. When a WFMgr receives a DAG for processing
from its XQMgr it must decide if it can carry out all the operations specified in the
DAG, or whether it needs to divide it into sub-DAGs and submit the sub-DAGs that it
cannot process to other XQMgrs. A service broker is available for interrogation to
determine which hosts can provide the required services, and what their addresses are.
A WFMgr manipulates the results of DAGs or sub-DAGs via UID::Product references,

DSTO-TR-1013

which can be used to retrieve actual result data from Geospatial and Imagery Access
Service[6] (GIAS)-based systems.

The XQM module currently contains interfaces, data structures, and error conditions
for a Client to communicate with a XQMgr. Current interaction is limited to the Client
submitting a DAG of image exploitation operations and also the ability to send a
callback object reference for the XQMgr to activate once the results of the DAG are
available. Future work will focus on (among other areas) interactive management of
DAG execution (being able to query the progress of a DAG, pause a DAG, end a DAG
in mid-execution, or restart a DAG, for example). The IDL for the XQM module is
shown in Figure 2.

#include "uco.idl"
»include "uid.idl"

module XQM {

struct Exceptionlnfo { string details; };
exception DAGIncompletable { Exceptionlnfo info; };

typedef UCO::NameValueList ParameterBlock;
typedef UCO::NameValueList RenderingHints;
typedef string DAGRef;

struct Joblnfo {
string user;
string group;
string job_id;
string priority;
string permissions;
RenderingHints global_hints;

};

interface XQMCallback {
notify(in UID::Product prod);

};

interface XQManager {
DAGRef submit_dag(in UCO::DAG expl_dag, in XQMCallback cb)

throws DAGIncompletable;
};

}; // end XQM module

Figure 2. The XQM module, containing interfaces, data structures, and exceptions for
Client communication with an Exploitation Query Manager

2.2.1 Exploitation Workflow Managers

A separate WFMgr thread is created for each exploitation task submitted to the XQMgr
by a Client. The WFMgr determines if all processing required can be carried out on the
current host, creates sub-DAGs if necessary, and farms out those sub-DAGs to other
XQMgrs for processing. A flag may be set to indicate to the other XQMgrs that they
should not attempt to optimise the sub-DAGs they get to avoid over-optimisation and

DSTO-TR-1013

continual hand-offs that may lead endless loops. While the Workflow Manager does
not have an IDL interface, this is likely to change once dynamic manipulation of DAGs
is considered. Currently the XQMgr only instantiates WFMgrs passing them a DAG as
a parameter.

It does not have an IDL interface as such, as nothing needs to interact with it other than
the XQMgr, and then it is currently only to instantiate it. It may be necessary to
introduce an interface to it to provide the ability to dynamically monitor and alter the
execution of DAGs.

ParameterBlock

Persistent part

Figure 3. A UCO/.DAG structure containing not only the instructions for the image
exploitation chain, but also header information including job details and global hints

2.3 DAG Structure

Since the federated GIXS model is intended to be a multi-user system, it is necessary to
introduce the notion of ownership to the DAG structure. Currently the nodes in a
UCO::DAG structure only contain enough attributes to store the name of an image
exploitation operation, a name-value list of arguments to the operation, and an
identification number. More attributes are needed on the nodes and in the DAG itself
to provide the functionality required. Such attributes include job information (as
shown in Figure 2) that can be attached to all sub-DAGs for identification in distributed
processing, global hints for all the operations in a DAG, specific hints for each
particular operation, and an attribute to store the UID::Product reference to where the

DSTO-TR-1013

results of the DAG should be stored. In addition, the DAG needs to be modifiable, as
some information may not be available when the DAG is constructed (e.g. a reference
to Buffer space reserved for result data). There also needs to be a mechanism to
indicate which intermediate results the Client should be informed of, should they be
required. It is quite possible that a user might want to see preliminary processing
results before committing to the execution of a long-running exploitation task. The
conceptual structure of such a DAG is shown in Figure 3.

In order that an image analyst can save an exploitation task for reuse or to pass on to
fellow analysts, the DAG structure must be able to be made persistent. A language
created with the Extensible Markup Language (XML) may be an excellent vehicle for
this functionality and this is an avenue that we will investigate in the near future.

A draft of the IDL module being used to model the DAG structure and semantics has
been developed and included in Appendix B. The DAG is known as an XDAG, and
future versions of our federated GIXS architecture may replace the
XFS::ExploitationPacket with the XDAG.

2.4 The Exploitation Buffer

To hide the distinction between data stored in the Exploitation Buffer (Buffer) and data
stored in GIAS-compliant Image Product Libraries (IPLs), the Buffer has been assigned
the extra responsibility of publishing a GIAS interface. In this way, when the Buffer is
commanded to load data referred to by a UID::Product reference, it does not need to
know whether the data is being retrieved from a remote Buffer or an I PL. In the same
way, a Client may retrieve a result from a Buffer or an IPL depending on where the
UID::Product reference points.

Furthermore, to allow the creation and manipulation of non-image data in the Buffer,
the Data Container (DC) module has been modified to include a NonlmageData
interface. The IDL for this interface is shown in Figure 4.

module DC {

interface NonlmageData {
any value;
string name;
string type;
string description;

NameValueList other_attributes; // eg. Re;cipe, timestamp
};

};

Figure 4. An IDL interface for non-image data results of image exploitation operations

The XBS::BufferMgr interface has also been modified to include a method for reserving
space in the Buffer for result data. The method returns a UID::Product reference to the

DSTO-TR-1013

space, which is passed to a Framework object (Framework). A Framework object, as
discussed in section 2.6, carries out the processing of a DAG, converting it to calls to
image exploitation services. The Framework uses this reference to store the results of
its executions. If the DAG has multiple results, then a hashtable or a name-value map
of the results is stored in the space reserved. It is assumed that the Client carrying out
the task will know the form of the results. When the Framework has finished executing
the DAG, it informs the WFMgr, which returns the result UID::Product reference back
to the Client. The signature of the method is:

UID::Product reserve_space(in long size_in_bytes);

Having a Buffer which acts as a long-term secondary storage (an IPL) as well as acting
as short-term storage in working memory does introduce issues about giving disparate
responsibilities to one subsystem. A way around this may be to use the Buffer as short-
term storage only and to move a product to a colocated IPL after a designated purge
time (whether the IPL be colocated on the Buffer's immediate host or just on the LAN).
The main reason for the inclusion of a GIAS interface to the Buffer was the need to
make the processing results available to the Client. The GIAS interface still does not
provide sufficient mechanisms for manipulating non-image data. This is an area for
further investigation.

2.5 The Image Exploitation Service

All image exploitation services are accessed through the interfaces in the Image
Exploitation Service (IES) module. Specifically this means that any service (for
example, rotation and image-to-map overlay operations, or live data-feeds accessed via
Java Jini) available to image exploitation tasks must be registered with an
IES::OperationFactory. The IES provides image exploitation operations or services,
each of which may be public (or standard), private, or custom-built (extended
operations). The Image Exploitation Services component[7] of the OpenGIS Abstract
Specification^] may provide a good basis for the public services that each host should
offer, although the current GIXS specification indicates that the Java Advanced
Imaging[9] libraries should be the standard services. In addition to these services is a
number of private services that can only be accessed on that particular host. For
example a particular host may have a RemoteView™[10] server running on it, or it may
have capabilities to perform a particular type of processing better than other
computers. The IES module also offers the ability to offer custom-built image
processing operations. Irrespective of how many of these different types of services
and operations are available on each host, their interfaces are all published via the
IES::OperationFactory interface. Investigations will take place as to how non-standard
(i.e. private and custom-built) operations can register their descriptions with the
IES::OperationFactory (although it may be better to leave this to the implementor's
discretion). The IES::OperationFactory is also responsible for informing the local
service broker of any services that register with it.

The Client discovers what services are available and from where through the use of the
local service broker. Although the implementation of the service broker is outside the

DSTO-TR-1013

scope of this project, it is necessary to decide on what information and metadata are to
be stored in the service broker. Initial ideas point towards using another XML-based
language that can be used to hierarchically categorise services and their features. For
example, a rotation service may be classed as an image processing service, which uses a
algorithm based on Fourier transforms, has complexity order 3 but has high accuracy,
and has an execution time of one minute per 100 x 100 pixel image tile. These details
must be query-able, and an XML-based language would be able to provide this given
appropriate categories.

The technology required for our service broker could be provided by a technology such
as the OpenGIS Catalogue Servicefll] or a well-known trading service.

2.6 The Exploitation Framework

A Framework is created on a per-DAG or -use basis via the XFS::FrameworkFactory
interface (the XFS::FrameworkMgr renamed). It is a transitory entity whereas the
XQMgr, the FrameworkFactory, the Buffer, and the IES::OperationFactory run
constantly on a host as server daemons. When the Framework receives a DAG it
translates the UCO::DAG representation into a chain of IES::RenderedOps using the
structure of the DAG and its content. It also extracts the UID::Product reference to the
space reserved for the DAG's results and uses the space when the results are ready. It
is the only component of the model that has access to the IES module. Essentially, it is a
smart data-pipe, which filters data according to instructions it is given. The sink of the
pipe is the space reserved in the Buffer for the results.

The algorithms used by the Framework will be tailored to most efficiently manipulate
the DAG structure. The algorithm will need to handle informing the Client of the
availability of intermediate exploitation results, and also handle multiple exploitation
results (possibly through the use of a hashtable of UCO::Product query keys).

2.7 Federated GIXS and IMAD

The diagram in Figure 5 shows an alternative view of the architecture and how it might
interoperate with the IMAD system. It depicts two GIXS systems on different hosts
being visible to two different GIXS/GIAS client applications. The IMAD service is also
visible to the applications as well as the GIXS systems. All systems use a CORBA
backbone as the middleware component used for inter-system communication. Also
visible on the system are IPLs, caches of data, and repositories of other data, and the
Exploitation Service Broker. Note that this broker may double as a repository for
information other than exploitation services. It may advertise data available in IPLs, for
example.

DSTO-TR-1013

Figure 5. A network-level diagram showing how the federated GIXS system would interact with
the MAD system, and other services.

3. Basic Path Scenario

This section describes the flow of events that occurs when a DAG is submitted to the
XQMgr on Host A, as shown in Figure 7. Let us take as an example the DAG shown in
Figure 6, consisting of a simple chain with two sources and one result. Assume that
Host B has a composite operation available that is not available on Host A, but that Host
A has a crop operation it can use. When the XQMgr on Host A receives the DAG it
creates a WFMgr dedicated to managing the task, giving the WFMgr the exploitation
DAG and the XQMCallback object submitted by the Client. This allows the XQMgr to
continue to receive service requests. The WFMgr examines the DAG and determines
that it cannot carry out the first part of the DAG (the composite operation). It queries the
local service broker to see whether any other hosts offer this service. The service broker
informs the WFMgr that Host B can. The WFMgr then separates the DAG into sub-
DAGs 1 and 2. It submits sub-DAG 1 to the XQMgr on Host B and waits for it to be
executed. When the XQMgr on Host B indicates that it has finished executing, the
WFMgr on Host A tells the local Buffer to make the remote result available (via a call to
request_tileable()) and then starts executing sub-DAG 2 by asking the
FrameworkFactory for a Framework and invoking its start_exploitation () method.
When the result is available, the WFMgr on Host A informs the Client, which retrieves
the result from the local Buffer via its GIAS interface. Below is a more detailed flow of
events for this scenario.

10

DSTO-TR-1013

Joblnfo
* Hints

Load
Droge

ma

hoaa. y
Krage

jfiCoffvposlteJ)

Joblnfo
^+ Hints J

/ N
Load
Xhfljge

V 3 J

Sub-BOG 1

lost B

Load

V—' 1

Joblnfo
+ Hints

sub-mc 2

Host A

Figure 6. An example DAG of image exploitation operations, and how it is divided into sub-
DAGs to be executed on Host A and Host B

Note that the "Load Image" nodes in the above diagram symbolise operations only -
the images and their associated metadata may reside on a different host again, even
Host A.

THE NETWORK

(tg CORBA.RMl)

„ Visible through
pT0CM9 Bpnce

Host A

Figure 7. A numbered flow of events initiated by a Client submitting a DAG of exploitation
tasks to its local XQMgr

The following list identifies the events that occur in according to the numbered arrows:
1. The Client queries the service broker to determine what services are available.
2. The Client then constructs a UCO::DAG using the service descriptions obtained

from the service broker. The DAG encapsulates the information shown in Figure 6
as well as job information and global hints. It also constructs an XQMCallback object
and submits a reference to it along with the DAG to its local XQMgr.

11

DSTO-TR-1013

3. The submitted DAG and callback are passed to a dedicated WFMgr, which manages
the execution of the DAG. The WFMgr queries the IES::OperationFactory to
determine what services are available locally.

4. It examines the DAG to see if the local system has the capabilities to carry out all the
operations in the DAG. When it finds that it does not (it knows it cannot carry out
the composition operation) it queries the local service broker to see which hosts can
provide the service.

5. When it knows that Host B can provide the service it divides the DAG into sub-
DAGs 1 and 2, and attaches the head node of the original DAG to each sub-DAG.
The WFMgr then passes sub-DAG 1 to the XQMgr on Host B (using the address
returned to it from the service broker) and then waits until it is notified that
execution is complete on Host B.

6. When results of the processing of sub-DAG 1 are available, the WFMgr assigned to
the task on Host B notifies the WFMgr on Host A that the result is ready and
available. It does this via a callback mechanism, passing a UID::Product reference to
the result as a parameter to the callback.

7. The WFMgr then commands the Buffer to make the remote result available, passing
the UID::Product reference as a parameter to the method
XBS: :BufferMgr.request_tilabie(). The task thread also registers an
XBS::XBCallback with the Buffer. The callback will be notified when the result is
ready for use.

8. The Buffer then prepares the remote result by retrieving the data or opening a data-
pipe to the Buffer or GIAS-compliant system holding the result.

9. Once the data is ready the Buffer activates a callback to wake up WFMgr. As a
parameter to the callback method (i.e. notify()) a UID::Product reference to the
local copy of the data is sent to the WFMgr.

10. The WFMgr asks the Buffer to reserve a space for the result of the processing of sub-
DAG 2 and receives a UID::Product reference as a return value.

11.The WFMgr annotates sub-DAG 2, adding the reference* to the local copy of the
result of sub-DAG 1 as a source of sub-DAG 2, and also adding the reference to
reserved space in the local Buffer for the result of the execution. The WFMgr then
asks the XFS::FrameworkFactory for a Framework object using the job information
included in the original DAG or alternatively extracted from the sub-DAG. The
FrameworkFactory returns a reference to a Framework extracted from a pool of
them or from a newly instantiated object (the specification of the current
XFS::FfameworkMgr seems to require the use of a resource pooling mechanism).

12.The WFMgr registers an EFCallback object with the Framwork object.
13. Execution of sub-DAG 2 is initiated by the WFMgr by calling the Framework's

start_exploitation() method.
14. The Framework extracts the information for the sub-DAG in order to translate each

node to a I ES operation. The node contains the name of the operation, along with a
UCO::NameValueList of the arguments required by the operation, and also an
optional list of hints. It manipulates the data in the form of DC::RenderedImage and

* What format the references passed between the Buffer, the WFMgr, and Frameworks should
be is a matter for further investigation. Some of the options available for the reference are
UID::Product and UCO::FileLocation, although these may be inadequate.

12

DSTO-TR-1013

DG.NonlmageData objects. Sub-DAG 2 consists only of a single crop operation. The
Framework carries out this operation.

15.The Framework then places the result into the space allocated in the Buffer. This
may need to be done via the GIAS interface if required (e.g. we decide that the
Buffer should not provide a GIAS interface, and its IPL functions should be
provided by a dedicated IPL), but for the moment we do this via the DC module.

16.The Framework then notifies the WFMgr via the EFCallback that the thread had
registered when submitting the sub-DAG. This is the end of the life of the
Framework object.

17.The WFMgr now notifies the Client via the XQMCallback, passing the UID::Product
reference to the local result in the Buffer as a parameter.

18.The Client accesses the final result in the Buffer through its GIAS interface using the
UID:: Product reference.

If the final result had been calculated on Host B instead, the WFMgr would have
passed to the Client the UID::Product reference to the remote result instead of a local
reference. To the Client, they would be identical apart from the latency, which could be
overcome by having the WFMgr make the result available locally or via an appropriate
image dissemination technology. For example, IMAD makes use of multiple
resolutions of the same image to get the data to the Client in the most efficient manner.
It is also entirely possible that all operations can be carried out on the local host, or
equally that all parts of the DAG must be farmed out. This second case may occur if the
current host is already too loaded even if it does have the capabilities required. A
mechanism needs to be developed that allows hosts to refuse DAGs gracefully rather
than continually creating threads to manage them and subsequently sending the DAGs
to other hosts to execute (which generates a livelock situation and a memory leak).

4. Changes Required to the Current GIXS

The federated GIXS model presented has been adapted from the current GIXS model.
This section explicitly lists the modifications required to move from the current GIXS to
the federated model.

The proposed changes are as follows:
• Overall:

- The Exploitation Workflow Manager has been replaced by the Exploitation
Query Manager and multiple, single task-dedicated Exploitation Workflow
Managers, whose roles and responsibilities have been clearly defined;

- the paths of visibility between the subsystems must be altered such that only
the FW can view the IES, and the Client can only see the XQMgr and the Buffer;

- the assumption of the availability of a service broker;
• Exploitation Query Manager:

- the introduction of the XQM module and the description of the XQMgr's and
the WFMgrs' behaviours and responsibilities;

• Exploitation Buffer Service:

13

DSTO-TR-1013

- the altering of the XBS::BufferMgr to include a method for reserving space in
the Buffer for results;

- the addition of the responsibility of publishing a GIAS interface
- the addition of the responsibility of 'loading' or making data available through

theXBS: :Buf ferMgr .request_[un] tileableO methods;
• Data Containers:

- the introduction of the NonlmageData interface and the addition of the
create_non_image_data () method in the RenderedlmageFactory interface;

• Exploitation Framework Service:
- the addition of the notion of a per-use or per-DAG existence for Framework

objects, rather than per-user;
- the ability to see and use the IES interfaces and operations;
- the changing of the name of the FrameworkMgr interface to

FrameworkFactory;
• Image Exploitation Service:

- the added responsibility (although already assumed) of publishing all image
processing operations; and

- the notions of public, private, and custom-built operations;
- the responsibility of informing the service broker of all new operations

registering with the IES::OperationFactory.
• Others:

- the availability within the GIAS of a way to access non-image data (e.g. the
ArrayAccessManager);

- the modification of the UCO::Product structure to include a string to be used as
a query key, and a string for local identification.

As further research is carried out, more changes may be required. We have
endeavoured to retain as much of the current GIXS as possible rather than modifying
it.

5. Conclusion

We have presented a federated GIXS model that has been adapted from the current
GIXS and which will interoperate with the USIGS architecture. A general description of
the model has been provided along with an explanation of the flow of events in such a
federated system for a particular scenario. This research is still in progress and there
are a number of areas still to be investigated in detail. Nevertheless, the main concepts
are in place and we believe this is a consistent and appropriate model for the purpose
of distributing image exploitation chains across a network of heterogeneous
computers, each varying not only in platform but also in specific capabilities.

Future work on this project includes the following areas and tasks:
• the construction of a working prototype that demonstrates the appropriate

functionality (e.g. chaining together of various operations, distribution of a single

14

DSTO-TR-1013

DAG across multiple heterogeneous computers, failure recovery, DAG persistence,
and private image exploitation services such as a Remote View™ service);

• development and evaluation of algorithms for traversing and dividing DAGs for
use by the Workflow Managers;

• the use of XML to make DAGs persistent and thus reusable;
• the investigation of issues associated with the manipulation of distributed DAGs in

mid-execution such as failure recovery, synchronisation and consistency,
parallelisation of processing, load balancing, and performance;

• the investigation of techniques for allowing XQMgrs to refuse work;
• the investigation of what information and metadata is to be used to register

services with the service broker, and how the metadata framework should be
implemented (initial work indicates XML may be a good option); and

• the investigation of what form references passed between the Buffer, WFMgrs, and
Frameworks should take.

6. Addendum

A minimal implementation of the FGIXS has been developed using Java 1.2.2, Inprise
VisiBroker 4.0, and Java Advanced Imaging 1.0.2. It has been successfully run on
multiple heterogeneous hosts, including Solaris 2.7, Linux 6.2 Windows NT 4.0, and
Windows 2000. It carries out the processing for an automatic target detection algorithm
embodied within a DAG. The target detection operation was developed for synthetic
aperture radar imagery and is written in C. It was linked into the Java implementation
via the Java Native Interface. Performance tests have been carried out and results
indicate that the architecture introduces little overhead to the processing of the DAG,
and that most execution time is taken up with the transferring of data via the CORBA
middleware implementation and Java Advanced Imaging library routines.

Furthermore, work on a second generation of the architecture investigating areas
mentioned above in section 5 has begun. Particular effort has been placed in the
development of the structure and semantics of the DAG given that the WFMgr and
Framework components rely so heavily upon them. Other areas that are being
investigated are tiling, caching, and tile streaming mechanisms, the incorporation of
robustness and recovery features, and pull and push execution models in the same
architecture. The new CORBA Component Model and Java 2 Enterprise Edition are
being investigated also.

15

DSTO-TR-1013

Appendix A: Abbreviations and Acronyms

This appendix lists the abbreviations and acronyms used in this document.

Acronym or Definition
Abbreviation

Buffer Exploitation Buffer
CORBA Common Object Request Broker Architecture
DAG Directed Acyclic Graph, specifically in this document of image

processing or exploitation operations
FW Exploitation Framework
GIAS Geospatial and Imagery Access Service
GIXS Geospatial Information and Imagery Exploitation Service
IDL Interface Description Language, as defined by the International

Standards Organisation
IES Image Exploitation Service
IMAD Image Management and Dissemination (system)
IPL Image Product Library
NIMA National Imagery and Mapping Agency (of the United States of

America)
Remote View™ An image exploitation tool
RMI Java Remote Method Invocation
Task A DAG of image exploitation or processing operations
UCO, UCOS USIGS Common Objects Specification, defines general-use data

structures
UID::Product USIGS Identification object, used to retrieve data from GIAS-

based systems
USIGS United States Imagery and Geospatial Information Service
WFMgr Exploitation Workflow Manager
XDAG Exploitation DAG, used in second generation of FGIXS

architecture
XQMgr Exploitation Query Manager

16

DSTO-TR-1013

Appendix B: XD module IDL

#include <uco.idl>

//
// The XD Module contains the data structure definitions for the FGIXS
// directed acyclic graph, used for representing chains of image processing
// and exploitation operations.
//
// author: Derek Weber
// date: 1st August 2000
//

module XD {

// Admin XNode types
// exploitation operation
const string ADMIN_XOP = "ADMIN_XOP";

// for activating callbacks to the client
const string ADMIN_CALLBACK = "ADMIN_CALLBACK";

// for loading files
const string ADMIN_FINELOAD = "ADMIN_FILELOAD";

// for storing files
const string ADMIN_FILESTORE = "ADMIN_FILESTORE";

// Push Initiation Node - for simulating the push execution model
const string ADMIN_PIN = "ADMIN_PIN";

// Remote source
const string ADMIN_RSOURCE = "ADMIN_RSOURCE";

// Remote sink
const string ADMIN_RSINK = "ADMIN_RSINK";

// Split node for minimising network traffic
const string ADMIN_SPLIT = "ADMIN_SPLIT";

// image source
struct Source {

string name;
string type;
string source_string; // source param or filename

};

// list of Sources
typedef sequence <Source> SourceList;

// sequence of 8-bit bytes
typedef sequence <octet> ByteSeq;

// byte stream
struct ByteValue {

long length;
ByteSeq byte_seq;

17

DSTO-TR-1013

};

// parameter
struct Param {

string name;
string type;
ByteSeq value;

};

// list of parameters
typedef sequence <Param> ParamList;

// hint structure
struct Hint {

string name;
ByteValue value;

};

// list of hints
typedef sequence <Hint> HintList;

// output definition
struct Output {

string name;
string type;

};

// sequence of outputs
typedef sequence <Output> OutputList;

// DAG node data structure, represents an exploitation operation
// or is an administration node
struct XNode {

for internal use with node management NodelD
string
string
SourceList
ParamList
HintList
OutputList

id; //
type; // Admin node or XOP
name; //
sources;
params;
hints;
outputs ,-

operation name

};

// list of XNodes
typedef sequence <XNode> XNodeList;

// parameter mapping
struct ParamMapping {

string src_param_name;
string sink_param_name
string type;

};

result of one XNode becomes the input of another

// list of parameter mappings
typedef sequence <ParamMapping> MappingList;

// edge structure - identifies the XNodes involved and the parameter

18

DSTO-TR-1013

// mappings
struct XEdge {
NodelD src;
NodelD sink;
MappingList param_mappings;

};

// list of XEdges
typedef sequence <XEdge> XEdgeList;

// list of NodelDs
typedef sequence <NodeID> NodelDList;

// NodelD/NodelDList pairing
struct NodelDNodelDList {
NodelD node;
NodelDList list;

};

// list of NodelD/NodelDList pairings - effectively a table of NodelDs
// - used to determine the edges leading in and out of each XNode in the
// XDAG
typedef sequence <NodeIDNodeIDList> NodelDNodelDTable;

// information about the exploitation task
struct Tasklnfo {

string user;
string group;
string job_id;
string priority;
string permissions;

};

// the XDAG structure
struct XDAG {
boolean analysed; // true if XDAG already analysed
XNodeList nodes;
XEdgeList edges;
NodelDNodelDTable edges_in;
NodelDNodelDTable edges_out;
HintList hints;
Tasklnfo task_info;

};

} // end XD module

19

DSTO-TR-1013

Acknowledgements

The authors would like to acknowledge the efforts of Ken Hawick and Paul
Coddington from the Distributed & High Performance Computing group of the
University of Adelaide and Don Uksi, Garry Hamlyn, and Kim Tang from the Image
Analysis & Exploitation group of the Defence Science and Technology Organisation.

20

DSTO-TR-1013

References

[I] Geospatial and Imagery Exploitation Service (G1XS) Specification, Version 1.0, National Imagery
and Mapping Agency (NIMA), United States Imagery and Geospatial Information System
(USIGS), document number S1010420-A, 22 June 1999.

[2] USIGS Architecture Products Home Page, National Imagery and Mapping Agency (NIMA), 9
February 2000. Available via the WWW as http://www.nima.mil/sandi/arch/.

[3] P.D. Coddington, K.A. Hawick, K.E. Kerry, J.A. Mathew, A.J. Silis, D.L. Webb, P.J.
Whitbread, CG. Irving, M.W. Grigg, R. Jana, & K. Tang, "Implementation of a Geospatial
Imagery Digital Library using Java and CORBA", in Proc. Technologies of Object-Oriented
Languages and Systems Asia (TOOLS 27), IEEE, September 1998.

[4] Object Management Group, The Object Management Group Home Page, January 2000.
Available via the WWW as http://www.omg.org/.

[5] Sun Microsystems, Java™ Remote Method Invocation, January 2000. Available via the WWW as
http: / /www, javasoft.com /prod nets /jd k / rmi /j.ndoxh trn I.

[6] Geospatial and Imagery Access Service (GIAS) Specification, Version 3.3, National Imagery and
Mapping Agency (NIMA), United States Imagery and Geospatial Information System
(USIGS), document number N0101-E, 22 June 1999.

[7] OpenGIS Consortium, Topic 15: Abstract Specification Image Exploitation Services, Wayland,
Massachussetts, USA, 1999. Available via the WWW as
http://www.opongis.org/techno/spocs.htm.

[8] OpenGIS Consortium, Topic 0: Abstract Specification Overvieio, Wayland, Massachusetts, USA,
1999. Available via the WWW as http://www.opengis.org/techno/specs.htm.

[9] Sun Microsystems, The Java™ Advanced Imaging Home Page, January 2000. Available via the
WWW as http://www.javasoft.com/products/java-media/jai/.

[10] Sensor Systems Incorporated, Welcome to RemoteView!, January 2000. Available via the
WWW as http://www.sensor.com/html3/remoteview.html.

[II] OpenGIS Consortium, Topic 13: Abstract Specification Catalog Services, Wayland,
Massachussetts, USA, 1999. Available via the WWW as
http: / /www.opengis.org/techno/specs.htm.

21

DISTRIBUTION LIST

A Federated GIXS Model

Derek Weber & Heath James

AUSTRALIA

DEFENCE ORGANISATION

Task Sponsor DAIO attention: Staff Officer Science

S&T Program
Chief Defence Scientist 1
FAS Science Policy f shared copy
AS Science Corporate Management '
Director General Science Policy Development
Counsellor Defence Science, London (Doc Data Sheet)
Counsellor Defence Science, Washington (Doc Data Sheet)
Scientific Adviser to MRDC Thailand (Doc Data Sheet)
Scientific Adviser Policy and Command
Navy Scientific Adviser (Doc Data Sheet and distribution list only)

Scientific Adviser - Army (Doc Data Sheet and distribution list only)

Air Force Scientific Adviser
Director Trials

Aeronautical and Maritime Research Laboratory
Director

Electronics and Surveillance Research Laboratory
Director (Doc Data Sheet and distribution list only)
Chief of Surveillance Systems Division
Research Leader Imagery Systems
Head IAE Group
Task Manager JNT 99/016
Author(s):
Derek Weber
Heath James

DSTO Fernhill
Mark Grigg

DSTO Library and Archives
Library Fishermans Bend (Doc Data Sheet only)
Library Maribyrnong (Doc Data Sheet only)
Library Salisbury
Australian Archives
Library, MOD, Pyrmont (Doc Data Sheet only)
US Defense Technical Information Center, 2 copies
UK Defence Research Information Centre, 2 copies

Canada Defence Scientific Information Service, 1 copy
NZ Defence Information Centre, 1 copy
National Library of Australia, 1 copy

Capability Development Division
Director General Maritime Development (Doc Data Sheet only)
Director General Land Development (Doc Data Sheet only)
Director General C3I Development (Doc Data Sheet only)
Director General Aerospace Development (Doc Data Sheet only)

Army
ABCA Standardisation Officer, Puckapunyal, (4 copies)
SO (Science), DJFHQ(L), MILPO Enoggera, Queensland 4051 (Doc Data Sheet

only)
NAPOC QWG Engineer NBCD c/- DENGRS-A, HQ Engineer Centre Liverpool

Military Area, NSW 2174 (Doc Data Sheet only)

Intelligence Program
DGSTA Defence Intelligence Organisation
Manager, Information Centre, Defence Intelligence Organisation

Corporate Support Program
OIC TRS, Defence Regional Library, Canberra

UNIVERSITIES AND COLLEGES
Australian Defence Force Academy

Library
Head of Aerospace and Mechanical Engineering

Serials Section (M list), Deakin University Library, Geelong, 3217
Senior Librarian, Hargrave Library, Monash University (Doc Data Sheet only)
Librarian, Flinders University
University of Adelaide, Department of Computer Science

Ken Hawick
Paul Coddington

OTHER ORGANISATIONS

NASA (Canberra)
AGPS
State Library of South Australia
Parliamentary Library, South Australia
Sun Microsystems

Michael Bukva
Kevin Mayo
John Noonan
Roger Day

OUTSIDE AUSTRALIA

ABSTRACTING AND INFORMATION ORGANISATIONS
Library, Chemical Abstracts Reference Service

Engineering Societies Library, US
Materials Information, Cambridge Scientific Abstracts, US
Documents Librarian, The Center for Research Libraries, US

INFORMATION EXCHANGE AGREEMENT PARTNERS
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and Technology, US

Defence Evaluation Research Agency
Paul Hopkins

National Imagery and Mapping Agency
NIMA OGC and OMG Program Manager
David Lutz

SPARES (8 copies)

Total number of copies: 62

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

2. TITLE

A Federated Geospatial and Imagery Exploitation Service (GIXS)
Model

4. AUTHOR(S)

Derek Weber and Heath James

6a. DSTO NUMBER
DSTO-TR-1013

8. FILE NUMBER
9505/019/0039/01(U)

6b. AR NUMBER
AR-011-533

1. PRIVACY MARKING/CAVEAT (OF
DOCUMENT)

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

Document
Title
Abstract

(U)
(U)
(U)

5. CORPORATE AUTHOR

Electronics and Surveillance Research Laboratory

PO Box 1500
Salisbury SA 5108 Australia

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
August 2000

9. TASK NUMBER
JNT 99/016

10. TASK SPONSOR
DAIO

11. NO. OF PAGES
21

12. NO. OF
REFERENCES
11

13. URL ON THE WORLD WIDE WEB

http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-

1013.pdf

14. RELEASE AUTHORITY

Chief, Surveillance Systems Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, SALISBURY, SA 5108
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CASUAL ANNOUNCEMENT Yes
18. DEFTEST DESCRIPTORS

Digital image processing, Systems integration, Computer architecture

19. ABSTRACT
In order for the Geospatial and Imagery Exploitation Service (GIXS) architecture to take advantage of
distributed processing of image exploitation tasks, it needs to be adapted to suit a federated environment.
This document reports on work in progress by the Image Analysis and Exploitation Group in conjunction
with the Distributed and High Performance Computing Group of The University of Adelaide to develop
a federated GIXS architecture along with a proof-of-concept implementation.
A federated GIXS model is described, along with a use case scenario including an event-flow diagram.
Also described are the changes necessary to adapt the current GIXS standard to our federated model. The
report concludes with some future directions for our research.

Page classification: UNCLASSIFIED

